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Talk overview

• What is our data?

• Population models: from basics to coalescent.

• Ancestral Recombination Graph: data structure for handling
recombinations.

• How recombinations affect data?
• How to make inference taking in account recombinations?

• Li and Stephens model: a different probabilistic model of
genomic data.
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Basic conceptions

• A DNA molecule is a sequence of four nucleotides: cytosine
(C), guanine (G), adenine (A) and thymine (T). Genomic
data is a text over a four-letter alphabet.

• A genome is the genetic material of an organism consisting of
DNA (or RNA for some viruses). It includes genes and
non-coding regions and packed and organised into
chromosomes, each of which is a long DNA molecule.

• Human genome is diploid : it contains two sets of
chromosomes, one coming from each parent. Genetic material
from one parent is called a haplotype.
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Some numbers

• Human genome length ≈ 3Gb (Giga-basepairs).

• There are ≈ 3 million differences between two typical human
haplotypes, e.g. maternal and paternal versions in one person.

• Most of these are shared with other people, caused by
mutations in the distant past, 10s or 100s of thousands of
years ago.

• Each one of us receives approximately 80 new mutations in
our genome from our parents, 10−8 per bp per generation
(though this estimate varies a lot!).

• Almost 100 millions of Single Nucleotide Polymorphisms
(SNP) are validated according to dbSNP.
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Sequencing costs
Sequencing price reduced dramatically which allow to create huge
genomic data bases.

Erika Check Hayden, Technology: The $1,000 genome. Nature, 2014
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1000 Genome project
1000 Genome Project is one of the biggest genomic data sets.
Currently (phase 3) it contains 2504 human individuals with 88
millions variant sites.
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What shapes the data?

Data

Genealogical
processes: DNA

duplication,
mutations, re-

combinations etc.

Sequencing and
genotyping: differ-

ent technologies
to “read” DNA.
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Sequencing
Sequencing technologies also influence on the data. Sequencing
produce a pool of reads - short strands of DNA, current standard
is 70-150 base pairs long, but we can get up to 10,000bp. Each
position can be covered by several reads (this number is random
though). This poses the following problems:

• De-novo assembly.

• Read alignment against reference genome.

• Variant calling: are there enough reads that support the
variant?

• Phasing: if SNP1 carries variants G and A and SNP2 with C
and T, there are two possible genomes which can underly the
data:

. . . G. . . A . . . . . . G . . . T . . .

. . . C. . . T . . . . . . C . . . A . . .
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Genealogical processes

• All the life reproduction is based on cell division. Genetic
material is duplicated during this process.

• Errors can occur during duplication. It can be a single
nucleotide polymorphism (SNP), insertions, deletions and
some other.

• Human gametes (reproduction cells) contain only one set of
chromosomes which is a mosaic of parental two sets of
chromosomes, which is created by recombinations.

Problem: Estimate mutation and recombination rates.
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Basic models

Problem: model population genomes.

• The most evident population models work forward in time
introducing birth (together with the choice of parent) and
death of individuals.

• Wright-Fisher model and Moran model are the classical
examples.

• The important parameter which affects the shape of
genealogy is the effective population size: the number of
breeding individuals in an idealised population.

• These models have more theoretical than computational
interest.
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Relationship between forwards in time (Wright-Fisher) and
backwards in time (Coalescent) models

• In the absence of recombinations, a genealogy of genome
samples is a tree. The internal nodes of the tree corresponds
to the most recent common ancestors of two lineages.

• Coalescent approach models genealogies backward in time,
which is computationally efficient.
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Coalescent model

Problem: to infer population history.

• Under constant population size, the times between successive
coalescent events are distributed exponentially with the
parameter

(k
2

)
, where k is the number of lineages at the

corresponding interval.

• The distribution of counts of allele frequencies j is 1/j .

• The deviations from this law can be used to detect variation
in effective population size and different population histories
(isolation, migration, bottlenecks etc.). Tajima’s D statistic is
the classical measure reflecting this property.
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Coalescent model
Here are two examples of decreasing and increasing effective
population size. In the first scenario the number of singletons is
relatively small, though in the second singletons will be
overrepresented.
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Recombinations
• If points on the genome are very close, e.g. adjacent, they

share the same tree.
• If points are very far, their trees are sampled from the

coalescent independently.
Problem: What happens in between?

A recombination in the ancestor of a modern sequence made it out
of two separate sequences, one contributing to the left and one to
the right.
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Pairwise Sequentially Markovian Approximation to the
Coalescent (PSMC)

• For two haplotypes, the tree is very simple. Recombinations
change its height.

• Local trees are states of a Hidden Markov Model

• Recombinations are transitions.

• Mutations are emissions.
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PSMC on simulated data

PSMC reconstructs individual history. It fits effective population
size and few other parameters.
Two haplotypes were simulated.
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Ancestral Recombination Graph (ARG)
The Ancestral Recombination Graph describes the way that
individual sequences in a population are related.
• At a locus, sequences are related by a tree.
• Ancestral recombinations change the tree as one moves along

the chromosome.

a . . . C . . . G . . . A . . . 000
b . . . T . . . G . . . C . . . 101
c . . . T . . . A . . . A . . . 110
d . . . T . . . A . . . C . . . 111
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Coalescent with recombination

Problem: infer relations along the genome at many scales
simultaneously.

• ARG is a structure (data type).

• The probability distribution over ARGs that arises when
recombination is added to the standard (Wright-Fisher) model
is called the Coalescent with Recombination.

• 2 possible events going backwards in time
• Coalescence: which merges two sequences.

For i sequences, rate is i(i − 1)/2N.
• Recombination: which splits a sequence into two.

For i sequences, rate is iLρ
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Approximating Coalescent with Recombination

• Statistical inference under Coalescent with Recombination is
very limited due to the complexity of the state space.

• Sequentially Markovian Coalescent approximation (McVean
and Cardin, 2005) considers ARG as a sequence of local trees
with a “prune-and-regraft” operation on them. The
transitions between trees are Markovian.

• It turns to be a very good approximation with a much more
tractable state space.
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MSMC

• MSMC is the method introduced by S. Schiffels and R.
Durbin.

• For a given set with n haplotypes it finds the first coalescence
for each segment which allows to infer both population size
and separation history.

• It is approximately Markov with the state space O(n2T )
where T is coalescence time.
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MSMC on simulated data

• Separation is inferred by the ratio of coalescences.

• Here are results for simulated data.
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MSMC on real data
The analysis of real data: out of Africa bottleneck and recent fast
population growth are supported clearly.
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ARG inference

• Even under SMC approximation the inference of ARG is
computationally hard problem.

• Discretised SMC is an approximation of SMC introduced by
Matthew D. Rasmussen, Melissa J. Hubisz, Ilan Gronau,
Adam Siepel in 2014.

• To generate an ARG they use the following strategy
implemented in the software called ARGweaver. Given an
ARG Gn for sequences h1, . . . , hn, sample an extended ARG
Gn+1 ⊃ Gn for the same sequences and a new one hn+1.
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ARGweaver sampling strategies

• One starts with a single sequence and trivial ARG G 1 and
subsequently adds sequences one by one.

• Gibbs sampling: given Gn, remove one sequence and add it
again on the resulting Gn−1. Internal nodes are poorly mixed
by this strategy.

• To overcome this limitation, they allow to rethread subtrees.

• Even with this can only look at ≈ 25 samples genome wide.

Problem: how to analyse ARG? What can be inferred?



Data Genealogy and coalescent Ancestral Recombination Graph Li and Stephens model

ARGweaver sampling strategies

• One starts with a single sequence and trivial ARG G 1 and
subsequently adds sequences one by one.

• Gibbs sampling: given Gn, remove one sequence and add it
again on the resulting Gn−1. Internal nodes are poorly mixed
by this strategy.

• To overcome this limitation, they allow to rethread subtrees.

• Even with this can only look at ≈ 25 samples genome wide.

Problem: how to analyse ARG? What can be inferred?



Data Genealogy and coalescent Ancestral Recombination Graph Li and Stephens model

ARGweaver sampling strategies

• One starts with a single sequence and trivial ARG G 1 and
subsequently adds sequences one by one.

• Gibbs sampling: given Gn, remove one sequence and add it
again on the resulting Gn−1. Internal nodes are poorly mixed
by this strategy.

• To overcome this limitation, they allow to rethread subtrees.

• Even with this can only look at ≈ 25 samples genome wide.

Problem: how to analyse ARG? What can be inferred?



Data Genealogy and coalescent Ancestral Recombination Graph Li and Stephens model

ARGweaver sampling strategies

• One starts with a single sequence and trivial ARG G 1 and
subsequently adds sequences one by one.

• Gibbs sampling: given Gn, remove one sequence and add it
again on the resulting Gn−1. Internal nodes are poorly mixed
by this strategy.

• To overcome this limitation, they allow to rethread subtrees.

• Even with this can only look at ≈ 25 samples genome wide.

Problem: how to analyse ARG? What can be inferred?



Data Genealogy and coalescent Ancestral Recombination Graph Li and Stephens model

Scale
chr2:

KCNE4

INSIGHT TFBS

Chimp Net
Gorilla Net

Orangutan Net
Rhesus Net

Marmoset Net

10 kb hg19
223,920,000 223,925,000 223,930,000 223,935,000 223,940,000 223,945,000 223,950,000

RefSeq Genes

INSIGHT Regulatory Selection

ArgWeaver TMRCA and Confidence Intervals

Rate of low frequency (<10%) polymorphisms in 5kb windows

Rate of high frequency (>10%) polymorphisms in 5kb windows

Divergence-based mutation rate used for ArgWeaver analysis

Placental Mammal Basewise Conservation by PhyloP

Complete Genomics CNV invariant regions
Complete Genomics CNV hypervariable regions

CG ARGweaver leaf trace

Primate Genomes, Chain and Net Alignments

TMRCA

615000 _

0 _

Low freq poly rate
0.025 _

0 _

High freq poly rate
0.004 _

0 _

Mutation rate
4e-08 _

0 _

Mammal Cons

4 _

-4 _

0 -

leafTrace

600 _

-600 _

0 -
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Data structures for ARG

• The ARG inference is a computationally hard problem.

• Need data structure which allow fast operations on ARG.

• Positional Burrow-Wheeler transform, or shortly PBWT (R.
Durbin, Bioinformatics, 2014) inspires the solution.

• PBWT is a new data structure for haplotype matching:
lexicographical reverse prefix order at every position of
genome.
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PBWT : example

PBWT cursor PBWT cursor
processed data
−−−−−−−−−−→

↓ ↓
h0 0000100

0010101
0000011
0001011
0001011
0001011
1100001
1100001
1000000

0 0. . . h0 0000100 0
0
0
0
0
1
1
1
1

0. . .
h1 0 1. . . h1 0010101 1. . .
h2 1 0. . . h3 0001011 0. . .
h3 0 0. . . h4 0001011 1. . .
h4 0 1. . . h7 1100001 1. . .
h5 1 0. . . h2 0000011 0. . .
h6 1 0. . . h5 0001011 0. . .
h7 0 1. . . h6 1100001 0. . .
h8 1 0. . . h8 1000000 0. . .
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Positional Burrows Wheeler Transform

The algorithm moves left-to-right, while re-sorting haplotypes at
every position following a certain rule.

Matches are adjacent in the sort order.
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Data compression

Simulate 100k sequences of length 20Mbp with ARG simulator
MaCS (Chen et al. 2009)

• 370,264 sites (one per 54bp): 37GB raw output

• gzip compresses to 1.02GB ( 35x compression)

• PBWT compresses to 7.7MB ( 4800x compresssion)

Real data: 1000 Genomes phase1 chromosome 1

• 2184 chromosomes, 3,007,196 sites

• PBWT 51,186,641

• gzip 302,883,517

• factor 5.9
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Tree consistent PBWT
• Tree consistent PBWT is an evolution of the PBWT data

structure.

• Currently it infers tree topologies.

• Without recombinations, the order converges and the correct
underlying genealogy topology.

• Tree is encoded by distances between it leaves (linear
memory).

• Basic strategy:
• Assume infinite site model: at most one mutation at site.
• If a column inconsistent with a tree, divide it in maximal

consistent branches.
• Rebuild the tree with minimal prune-and-regraft operations.

• All operations can be performed with either linear or sublinear
complexity in the number of tree leaves using the data
structure.
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tcPBWT : perfect phylogeny example and run-time

Perfect phylogeny: tcPBWT will find the correct topology in
linear time.

B1 B2 B3 B4 B5 encoded tree
h0 1 0 1 0 0 -
h1 1 0 1 1 0 1
h2 0 0 1 0 0 2
h3 0 1 0 0 1 3
h4 0 1 0 0 0 1

To generate an ARG for chromosome 20 of 1000 Genome Project,
phase 3 (5006 sequences, ≈ 860 thousands SNPs) it took ≈10
minutes.
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tcPBWT : conclusions
• tcPBWT reduces state space of ARGs.
• It provides a new framework for scalable ARG generation.
• Tree are encoded and updated in terms of distance which

encourages to search for algorithms for inference of times of
events.

Population analysis based on an ARG inferred by tcPBWT .
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Li and Stephens model

• As we have just seen, inference under coalescent is a
challenging problems. Li and Stephens model (or copying
model) is a Hidden Markov Model-based approach which
allows to infer full likelihood straightforwardly.

• Given a reference panel h1, . . . , hn of haplotypes, a new
haplotype hn+1 is generated:

• Select randomly a haplotype.
• Copy the first locus with a small probability of error.
• With high probability the next locus is copied from the same

haplotype.
• Alternatively, the haplotype for copying is re-chosen, uniformly

and independently.



Data Genealogy and coalescent Ancestral Recombination Graph Li and Stephens model

Li and Stephens model

• As we have just seen, inference under coalescent is a
challenging problems. Li and Stephens model (or copying
model) is a Hidden Markov Model-based approach which
allows to infer full likelihood straightforwardly.

• Given a reference panel h1, . . . , hn of haplotypes, a new
haplotype hn+1 is generated:

• Select randomly a haplotype.
• Copy the first locus with a small probability of error.
• With high probability the next locus is copied from the same

haplotype.
• Alternatively, the haplotype for copying is re-chosen, uniformly

and independently.



Data Genealogy and coalescent Ancestral Recombination Graph Li and Stephens model

Li and Stephens model
• Mutations are incorporated in the model as copying errors.
• Recombinations are presented as reselecting haplotypes.
• Li and Stephens model is a Hidden Markov chain with

transition probabilities corresponding to reselecting haplotypes
and with emissions corresponding to copying or miscopying
alleles.

• Computation of maximum likelihood of a set of haplotypes is
straightforward under this model.

1 0 0 1 0 1 1 1 0 0

0 1 1 0 0 1 0 1 1 0

1 1 0 0 1 1 0 1 0 0

0 1 1 1 0 1 1 1 0 0
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Summary

• Large data sets appear in genomic nowadays.

• Statistical inference is challenging due to the huge state-space
of underlying models and the data size.

• New data structures and algorithms are needed to make data
processing scalable and precise in the same time.
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