Notice

on

REDACTIONS

Due to the timely nature of the presented slides, some have been redacted by eliminating complete slides. The redaction has been performed:
$>$ To protect proprietary information
$>$ To potentially protect from copywriting infringement
$>$ To not allow any journal to claim that the new results presented had already been published, thereby eliminating double-publication appearances.
The authors apologize for these legal impediments to advancing science.

Spanning Trees, Continents, and the Quantum/Classical Divide on D-Wave 2 Machines

Mark A. Novotny

CSP2015

International Conference on Computer Simulation in Physics and beyond

National Research University Higher School of Economics Moscow, Russia September 6-10, 2015

Spanning Continents D-Wave 2 Machines

Mark A. Novotny
J. Spencer Hall

Lukas Hobl
 Kristel Michielsen

Mississippi State U

Spanning Continents Dollars and Euros

Mark A. Novotny
J. Spencer Hall

NSF DMR-1206233

Lukas Hobl Kristel Michielsen

Jülich Supercomputing Centre

Who has done computational physics ...

Computer CPU based on transistors?

Data storage on paper tape?

RAM from coil-wound solenoids?

Programmed in Assembly language?

A 1000+ qubit quantum computer?

Disruptive to computing

Been doing computational physics since

 PhD in Physics from Stanford University in 1978
In 35+ years, $\boldsymbol{T} \boldsymbol{W} \mathbf{O}$ disruptive computing innovations:

Quantum Computing

"Perhaps the quantum computer will change our everyday lives in this century in the same radical way as the classical computer did in the last century."

Nobel press release (Oct. 2012)
David J. Wineland Serge Haroche

Classical Ising Model spin $=1 / 2$

Each spin has two values: $s_{j}= \pm 1$
bias (magnetic) field $\boldsymbol{h}_{\boldsymbol{j}}$ on each spin coupling $J_{i, j}$ between spin pairs

$$
\mathcal{H}_{0}=-\sum_{\langle i, j\rangle} J_{i, j} \sigma_{i}^{z} \sigma_{j}^{z}-\sum_{i=1}^{N} h_{i}^{z} \sigma_{i}^{z}
$$

Ferromagnetic:
Antiferromagnetic:
Ising spin glass:
Random field:
all $J_{i j}=+1$
all $J_{i j}=-1$
random $J_{i j}$ random $\boldsymbol{h}_{\boldsymbol{j}}$

Classical Ising Model spin $=1 / 2$

Ferromagnetic:

8 0

Singularity (infinite system)
Critical exponents

Classical Ising Model

$$
\begin{gathered}
y_{T}=1 / v \\
\boldsymbol{d}=1+\varepsilon \text { expansions }
\end{gathered}
$$

depends on dimension d

$\nu=1$ exact $d=2$

resummed $\boldsymbol{d}=4-\varepsilon$ expansions

Numerical transfer matrix

Novotny PRB 1992

Intro. to Small World Networks

Construct Small-World Networks

$>\boldsymbol{p}=$ Fraction of bonds added
$>\boldsymbol{L}\left(\right.$ or $\left.\boldsymbol{L}^{2}\right)$ lattice nodes
$>$ Average distance between nodes $\boldsymbol{d} \sim \ln (L)$

Small World (z-model)

$>$ Start with $d=1$ chain of spins
$>$ Randomly connect pairs of spins
$>$ All spins have z interactions

Ising Ferromagnet

Introduced by Scalettar 1991

Small-world (z-model)
 y_{T} mean field

$>$ Binder $4^{\text {th }}$-order cumulant

Ising Ferromagnet

Brézin

Zinn-Justin

1985
Exact $\mathrm{N}=\infty$ value at T_{c}

Transverse Field Ising Model spin $=1 / 2$
Each spin is a two-component vector: s_{j} bias (magnetic) field $h_{j} \sigma_{j}^{z}$ each spin transverse field $\Gamma_{j} \sigma_{j}^{x}$ each spin coupling $J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}$ between spin pairs

-- ($\left.\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$		
$\binom{0}{0}$	5, (${ }^{\text {a }}$ (
(5, (tat	
[- $-\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$	\therefore - (1) $_{1}^{1}$)	$5-$

What can an IDEAL aQC do? $a Q C=$ adibatic Quantum Computer

You give aQC:
bias $\boldsymbol{h}_{\boldsymbol{j}}$ on each qubit
coupling $J_{i j}$ between qubit pairs
You get (probably)
Ground state spins $\left\{s_{j}\right\}$

Why should you care? Complexity theory

Complexity

SIVID Parallelization of

Ising Spin Glass

The graph is fixed; 2^{N} processors

> Given $J_{i, j}$ and \boldsymbol{h}_{j} calculate Energy $E(\{s\})$
> for all 2^{N} configurations

Find Groundstate (lowest energy state)

SIMD = Single Instruction Multiple Data

SIMID Parallelization of

Ising Spin Glass

The graph is fixed; 2^{N} processors

Scatter problem: Given $J_{i, j}$ and $\boldsymbol{h}_{\boldsymbol{j}}$

PE 1

PE 2
I

GATHER solutions:

 return lowest $E(\{s\})$
aQC as analog SIMD computer

adiabatic D-Wave Quantum Computer (aDWQC)
Maximum number processors you have parallelized over?
Novotny: Thinking Machine CM-2: $2^{16}=65,536$
aDWQC: NASA/Google/USRA: $1000+$ qubit: $2^{1000}=10^{301}$ aDWQC 1000 qubit announcement: June 22, 2015

$$
\begin{aligned}
& 2^{16}=7 \times 10^{4} \\
& 2^{22}=4 \times 10^{6} \\
& 2^{230}=10^{69} \\
& 2^{1000}=10^{301} \\
& 2^{1097}=10^{330}
\end{aligned}
$$

The Transverse Ising Model

$$
\begin{aligned}
& H(t)=\Lambda(t) H_{0}+\Gamma(t) \sum_{i=1}^{N} h_{i}^{x} \sigma_{i}^{x} \\
& H_{0}=\sum_{i, j=1}^{N} J_{i, j} \sigma_{i}^{z} \sigma_{j}^{z}+\sum_{i=1}^{N} h_{i}^{z} \sigma_{i}^{z}
\end{aligned}
$$

- H_{0} is the classical Hamiltonian to be solved
- The $\Gamma(\mathrm{t})$ allows for quantum tunneling between the classical states
- At $t=0$ is $\Gamma(0)=1$ and $\Lambda(0)=0$
- System at $\mathrm{t}=0$ is fully characterized by: $\sum_{i=1}^{N} h_{i}^{x} \mathrm{\sigma}_{i}^{x}$

Annealing

- During annealing the transverse term is slowly turned off $(\Gamma \rightarrow 0)$
- The weight of the Ising Hamiltonian is turned up $(\wedge \rightarrow 1)$
- If done slowly enough the system should remain in the ground state at all time (adiabatic)

Landau Zener

Laundau Zener Formula: $P_{\text {diabatic }}=\exp \left(-\tau \Delta^{2} \alpha\right) \quad P_{\text {adiabatic }}=1-\exp \left(-\tau \Delta^{2} \alpha\right)$

$$
\alpha=\frac{2 \pi}{\hbar \Gamma(\lambda)}
$$

What can aQC do:

```
aQC = adiabatic Quantum Computer
```

Gives global minimum (ground state) of Ising glass
$>$ (QUBO)
$>\quad$ Limits $T>0$ and $t>\infty$
$>$ Probabilistic machine
$>$ On architecture graph

You give aQC:
bias h_{j} on each qubit
coupling $J_{i j}$ between qubit pairs
You get (probably)
Ground state spins

Can only quantum physicists program

$$
\begin{aligned}
& I=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \\
& i=\sqrt{-1} \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \vec{\psi}_{x+}=\frac{1}{\sqrt{2}}\binom{1}{1} \quad \vec{\psi}_{x-}=\frac{1}{\sqrt{2}}\binom{1}{-1} \\
& 0-\binom{0-1}{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \left.\begin{array}{c}
0 \\
0 \\
0
\end{array}\right)<\binom{1}{1}<\binom{0}{0}
\end{aligned}
$$

You give aQC: an aQC?
bias h_{j} on each qubit
coupling $J_{i j}$ between qubit pairs
You get (probably)
Ground state spins

| $D-$ Wave $2 X \quad 1000+$ qubits |
| :---: | :---: |
| The Quantum Computing Company |
| тм |

Novotny at D-Wave
 2013

SITATE
MISSISSIPPI STATE

D-Wave $2 X$
 $1000+$ qubits

$K_{4,4}$ Chimera lattice

Spanning Trees A tree (no loops) that includes every node in a graph

Spanning Trees: algorithm

A spanning tree uniformly drawn from the ensemble of all spanning trees

$>$ Randomly choose a node i
> Randomly choose a link to another node j
$>$ If node already visited no change to tree
$>$ If first visit to node j, add link \& node to tree
$>$ Interchange $j \geqslant i$

Spanning Trees: algorithm

A spanning tree uniformly drawn from the ensemble of all spanning trees

$>$ Randomly choose a node i
> Randomly choose a link to another node j
$>$ If node already visited no change to tree

$>$ If first visit to node j, add link \& node to tree
$>$ Interchange $j \geqslant i$

Spanning Trees: algorithm

A spanning tree uniformly drawn from the ensemble of all spanning trees

$>$ Randomly choose a node i
> Randomly choose a link to another node j
$>$ If node already visited no change to tree
$>$ If first visit to node j, add link \& node to tree
$>$ Interchange $j \geqslant i$
$>$ STOP when all nodes are in tree

Spanning Trees: algorithm

A spanning tree uniformly drawn from the ensemble of all spanning trees

Spanning tree on 1097 qubit NASA/Google/USRA D-Wave 2X

$$
\begin{aligned}
& J_{i, j}= \pm 1 \quad h_{j}=0 \\
& E_{\text {ground }}=N_{\text {qubits }}-1
\end{aligned}
$$

Spanning Trees: algorithm

A spanning tree uniformly drawn from the ensemble of all spanning trees

Spanning tree advantage:
$>$ Each tree includes all qubits
$>$ Ensemble covers all bonds
$>$ Ensemble is well defined
$>$ Works on any graph
$>$ Known groundstate
$>$ Known spin arrangements
$>$ Hard problem for aQC

$$
\begin{gathered}
J_{i, j}= \pm 1 \quad h_{j}=0 \\
E_{\text {ground }}=N_{\text {qubits }}-1 \\
\hline
\end{gathered}
$$

Recent MSU/JSC aDWQC publication

Available online at www.sciencedirect.com
ScienceDirect

Physics Procedia (2015) 000-000

Physics

Procedia

www.elsevier.com/locate/procedia

28th Annual CSP Workshop on "Recent Developments in Computer Simulation Studies in Condensed Matter Physics", CSP 2015

A Study of Spanning Trees on a D-Wave Quantum Computer

J.S. Halla ${ }^{\text {a }}$, M.A. Novotny ${ }^{\text {a,*, }}$, T. Neuhaus ${ }^{\text {b }}$, Kristel Michielsen ${ }^{\text {b }}$

${ }^{a}$ Mississippi State University, 75 B.S. Hood Dr., Mississippi State, MS 39762, USA
${ }^{b}$ Institute for Advanced Simulation, Jilich Supercomputing Centre, Research Centre Jilich, D- 52425 Jilich, Germany

Recent MSU/JSC aDWQC publication

Available online at wnw. sciencedirect.com
ScienceDirect
Physics Procedia (2015) 000-000

Physics

Procedia

www.elsevier.com/locate/procedia

28th Annual CSP Workshop on "Recent Developments in Computer Simulation Studies in Condensed Matter Physics", CSP 2015

A Study of Spanning Trees on a D-Wave Quantum Computer

${ }^{a}$ Mississippi State University, 75 B.S. Hood Dr., Mississippi State, MS 39762, USA
${ }^{b}$ Institute for Advanced Simulation, Jilich Supercomputing Centre, Research Centre Jillich, D-52425 Jillich, Germany

Spanning tree on 496 qubit D-Wave 2

Recent MSU/JSC aDWQC publication

Spanning trees 496 qubit D-Wave 2
5×5 square 197 qubits

100 spanning trees 100 submissions each 10^{3} anneals

$$
J_{i j}= \pm 1
$$

Recent MSU/JSC aDWQC publication

Spanning trees 496 qubit D-Wave 2
$m \times m$ square

100 spanning trees up to100 submissions each 10^{3} anneals

$$
J_{i j}= \pm 1
$$

Good Oracle?

$$
\text { eani } 10 \text { anmeals }
$$

Lukas Hobl D-Wave 2

Spanning trees 476 qubit D-Wave 2

Are uncoupled subgraphs independent?

Yes.

1 spanning tree

$$
J_{i j}=+1
$$

Day old results:
 D-Wave 2X

Spanning trees 1097 qubit D-Wave 2X

Compare D-Wave 2X With D-Wave 2

$$
\begin{aligned}
& \text { Fraction ground state is ever found: } \\
& \text { 100 submissions, } 10^{3} \text { anneals per submission } \\
& \\
& \text { D-Wave 2 } \\
& \text { D-Wave 2X } \\
& \text { D }
\end{aligned}
$$

1 spanning tree

$$
J_{i j}= \pm 1
$$

Day old results:
 D-Wave 2X

Does it find the ferromagnetic ground

1097 qubit spanning tree:

10^{3} submissions, 10^{3} anneals per submission state?

Ground state found 4.2% of time

1 spanning tree

$$
J_{i j}=[-1,+1]
$$

Week old results:
 D-Wave 2X

Ferromagnetic 1097 qubit D-Wave 2X

Does D-Wave find the ferromagnetic ground state?

1 full graph $J_{i j}=+1$
$h=0.0 \quad$ all $s=-1$
$h=0.06$ all $s=-1$
$h=0.07 s=-1,823$ times; $s=-1,177$ times
$h=0.08$ all $s=+1$

How to improve D-Wave aQC?

Keep anneal time the same Change function $\Gamma(t)$
$P_{\text {adiabatic }}=1-\exp \left(-\tau \Delta^{2} \alpha\right)$

Change success probability

$$
P_{\text {adiabatic }}=1-\exp \left(-\tau \Delta^{\otimes}\right)
$$

How to improve D-Wave aQC?

Change graph

 to SW graph$$
d=\infty
$$

Requires only 1-2 additional chip layers

US Patent Pending

Is aDWQC an aQC?

D-Wave 2X with 1000+ qubits does ...

 D-Wave $2 X$ is NOT ideal adiabatic quantum computer

More tests needed ... more improvements needed

Conclusions and Comments

D-Wave $2 X$ with $1000+$ qubits does ...

Spanning trees useful as tests of aQC

Next generation aQC can be improved

My current use of aQC Boltzmann Machines (Deep Belief)

Intersection of 3 fields:

1) Cybersecurity
2) Boltzmann machines
3) Quantum computing

MISSISSIPPI STATE

Conclusions and Provocations

Quantum computing is here NOW!
Moscow understands quantum!

Conclusions and Provocations

Quantum computing is here NOW!
Adiabatic quantum computing with 10000+ qubits in four years?

NP-Hard problems are computable!

