Discontinuous Percolation

Hans J. Herrmann

Computational Physics, IfB, ETH Zürich, Switzerland

CSP 2015

International Conference on Computer Simulations in Physics and beyond

Moscow, September 6-10, 2015

ETH
 Collaborators

Nuno Araújo

Young-Sul Cho

José Soares Andrade

Byungnam Kahng

Bob Ziff

Lucas de Oliveira

Julian Schrenk

Peter Grassberger

ETH Classical Percolation

Site percolation on the square lattice:
$P(p)=$ fraction of sites in the largest cluster Occupy randomly sites with probability p.

$\mathrm{p}=0.2$

$\mathrm{p}=0.59$

$\mathrm{p}=0.8$

Neighboring occupied sites are „connected" and belong to the same cluster. Above a critical theshold $\boldsymbol{p}_{\boldsymbol{c}}$ one has a spanning cluster. The phase transition is continuous (of second order) with universal critical exponents.

CSP 2015, Moscow, September 6-10, 2015

ETH Quest for First Order Transition

Breaking of a dam

Volcano eruption

Financial bubble

First Order Transition in Percolation

Bootstrap Percolation

$$
Z_{c}=2
$$

The transition is first order (at $\boldsymbol{p}_{c}=\mathbf{1}$) on simple cubic and triangular lattice

$$
\text { when } Z_{c} \geq 4
$$

and on square lattice when $Z_{c} \geq 3$.

CSP 2015, Moscow, September 6-10, 2015

The Saga of Explosive Percolation

Dimitris Achlioptas

Raissa D'Souza

Joel Spencer
D. Achlioptas, R. M. D'Souza and J. Spencer, Science 323, 1453 (2009)

ETH Product Rule (PR)

- Consider a fully connected graph.
- Select randomly two bonds and occupy the one which creates the smaller cluster.
classical percolation

product rule

D. Achlioptas, R. M. D’Souza and J. Spencer, Science 323, 1453 (2009)

CSP 2015, Moscow, September 6-10, 2015

ETH Product Rule (PR)

cluster size distribution $\boldsymbol{n}_{\boldsymbol{s}}$

on the square lattice:

$n_{s} \propto S^{-\tau}$

Y. S. Cho et al., Phys. Rev. E 82, 042102 (2010)

Transition continuous in thermodynamic limit

J. Nagler, A. Levina and T. Timme, Nature Phys. 7, 2645 (2010)
O. Riordan and L. Warnke, Science, 333, 322 (2011)
R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys. Rev. Lett., 105, 255701 (2010)

But what happens in finite dimension ??
CSP 2015, Moscow, September 6-10, 2015

- Select randomly m bonds and occupy the one which creates the smaller cluster

José Soares Andrade Jr.

This is a straightforward generalization of the Product Rule which corresponds to $m=2$. $m=1$ is classical percolation.

EH

Best-of-m Model

$$
\begin{aligned}
& \chi=\sum_{i} s_{i}^{2} \\
& P_{\infty}=s_{\text {max }} / N \\
& \chi_{\infty}=\sqrt{\left\langle s_{\max }^{2}\right\rangle-\left\langle s_{\max }\right\rangle^{2}}
\end{aligned}
$$

at \boldsymbol{p}_{c} on square lattice

$$
m=2
$$

classical percolation

CSP 2015, Moscow, September 6-10, 2015

EHH Mixing $m=10$ with $m=1$

q is the fraction of $m=1$ bonds

N. A. M. Araújo, J. S. Andrade Jr., R. M. Ziff, and HJH, Phys.Rev.Lett. 106, 095703 (2011) CSP 2015, Moscow, September 6-10, 2015

ETH
 Mixing $m=10$ with $m=1$

tricritical p point

N. A. M. Araújo, J. S. Andrade Jr., R. M. Ziff, and HJH, Phys.Rev.Lett. 106, 095703 (2011) CSP 2015, Moscow, September 6-10, 2015

ETH Mixing $m=10$ with $m=1$

tricritical scaling

$\mu_{p} \propto \mu_{q}^{\frac{1}{\varphi_{t}}}$

CSP 2015, Moscow, September 6-10, 2015

ETH Mixing $m=10$ with $m=1$

tricritical scaling

Nuno Araújo

- select randomly a bond
- if not related with the largest cluster occupy it
- else, occupy it with probability

$$
q=\exp \left[-\left(\frac{s-\bar{s}}{\bar{s}}\right)^{2}\right]
$$

Nuno Araújo and HJH, Phys. Rev. Lett. 105, 035701 (2010)

EH

Largest Cluster Model

order parameter: $\mathbf{P}_{\infty}=$ fraction of sites in largest cluster

CSP 2015, Moscow, September 6-10, 2015

ETH Largest Cluster Model

at $\boldsymbol{p}_{\boldsymbol{c}}$
 cluster size distribution

CSP 2015, Moscow, September 6-10, 2015

ETH Largest Cluster Model

at $\boldsymbol{p}_{\boldsymbol{c}}$

ETH
 Surface of the clusters

CSP 2015, Moscow, September 6-10, 2015

ETH Largest cluster Model in 3D

Julian Schrenk
K.J. Schrenk, N.A.M. Araújo, and H.J.H., Phys. Rev. E, 84, 041136 (2011)

CSP 2015, Moscow, September 6-10, 2015

ETH Largest cluster model in 3D

ETH
 Bridge Percolation

CSP 2015, Moscow, September 6-10, 2015

ETH
 Bridge Percolation

CSP 2015, Moscow, September 6-10, 2015

ETH \quad Bridge Percolation

CSP 2015, Moscow, September 6-10, 2015

Bridge Percolation

$$
N_{\mathrm{BB}}(p, L)=L^{\frac{1}{v}} F\left[\left(p-p_{c}\right) L^{\theta}\right]=L^{d_{B B}} \tilde{F}\left[\left(p-p_{c}\right) L^{\zeta}\right]
$$

CSP 2015, Moscow, September 6-10, 2015

EHH Bridge Percolation in 3D

CSP 2015, Moscow, September 6-10, 2015

ETH Bridge Percolation in 3D

CSP 2015, Moscow, September 6-10, 2015

EHH Bridge Percolation $d=2-6$

CSP 2015, Moscow, September 6-10, 2015

EH

Cutting bonds

If one starts from a fully occupied lattice and removes bonds except if they are cutting bonds in 2d they have the same behavior as the bridges before (same exponents).
In higher dimension the exponents are different.

ETH
 Same fractal dimension

watersheds

E. Fehr, J.S. Andrade Jr., S.D. da Cunha, L.R. da Silva, H.J.H., D. Kadau, C.F. Moukarzel, E.A. Oliveira, J. Stat. Mech. P09007 (2009)

shortest path on loop-less percolation

optimal path crack

J.S. Andrade Jr., E. Oliveira, A. Moreira and HJH, Phys.Rev.Lett.
103, 225503 (2009)

Same fractal dimension

Two invading liquids touching

Schramm-Loewner Evolution (SLE)
 Rouhani and H. J. H.

Fuses in infinite disorder

A.A. Moreira, C.L.N. Oliveira, A. Hansen, N.A.M. Araújo, H.J.H., J.S. Andrade Jr, Phys. Rev. Lett. 109, 255701 (2012)
E. Daryaei, N. A. M. Araújo, K. J. Schrenk, S.

Phys. Rev. Lett. 109, 218701 (2012)
CSP 2015, Moscow, September 6-10, 2015

ETH High precision calculation

E. Fehr, K.J. Schrenk, N.A.M. Araújo, D. Kadau, P. Grassberger, J.S. Andrade Jr., H.J.H. Phys. Rev.E 86, 011117(2012)
CSP 2015, Moscow, September 6-10, 2015

ETH Universality

CSP 2015, Moscow, September 6-10, 2015

EH

Corrections to scaling

$$
C_{L}^{2 D}=a_{00}+a_{11} L^{-\omega}+a_{21} L^{-\Omega}+a_{22} L^{-\Omega-1}
$$

model	d	d_{f}	Ω
WS bond	2	1.2168 ± 0.0005	0.95 ± 0.05
WS site	2	1.21705 ± 0.00075	0.91 ± 0.19
BL	2	1.21655 ± 0.0015	0.87 ± 0.08
MC	2	1.21655 ± 0.0045	0.86 ± 0.11
WS bond	3	2.4865 ± 0.0025	0.96 ± 0.10
WS site	3	2.4865 ± 0.0025	0.98 ± 0.09
BL	3	2.4878 ± 0.0025	1.06 ± 0.16

CSP 2015, Moscow, September 6-10, 2015

EIH Spanning cluster avoiding model
Y. S. Cho, S. Hwang, H.J.H., and B. Kahng, Science, 339, 1185 (2013)

Choose m unoccupied bonds and occupy randomly one which is not a bridge, if all are bridges then choose randomly one of these bridges.

$$
m=2
$$

CSP 2015, Moscow, September 6-10, 2015

EIH Spanning cluster avoiding model

For finite systems there is a jump for $\boldsymbol{m}>1$.

Y. S. Cho, S. Hwang, H.J.H., and B. Kahng, Science, 339, 1185 (2013)

CSP 2015, Moscow, September 6-10, 2015

E/H Spanning cluster avoiding model

At each dimension d

 there exists an m_{c} so that for increasing system size L the transition goes to $\boldsymbol{p}_{\boldsymbol{c}}=\mathbf{0 . 5}$ for $\mathbf{m}<\boldsymbol{m}_{c}$ and to$$
\boldsymbol{p}_{c}=1 \text { for } \boldsymbol{m}>\boldsymbol{m}_{c} .
$$

$$
m_{c}(2) \approx 2.55 \pm 0.01 \quad m_{c}(3)=5.98 \pm 0.07 \quad m_{c}(4)=16.99 \pm 5.23
$$

Y. S. Cho, S. Hwang, H.J.H., and B. Kahng, Science, 339, 1185 (2013)

CSP 2015, Moscow, September 6-10, 2015

EIH Spanning cluster avoiding model

$N_{b}=d L^{d}$ is the number of bonds

$$
N_{B B} \sim\left\{\begin{array}{lll}
L^{1 / v} & \text { for } & p=p_{c} \\
L^{d_{B B}}\left(p-p_{c}\right)^{\varsigma} & \text { for } & p>p_{c}
\end{array}\right.
$$ probability to have m bridge bonds:

$$
q(p, m)=\left[\frac{N_{B B}}{N_{b}(1-p)}\right]^{m} \sim N_{b}^{-m / m_{c}}\left[\frac{\left(p-p_{c}\right)^{\varsigma}}{1-p}\right]^{m}
$$

$$
\Rightarrow m_{c}(d)=\frac{d}{d-d_{B B}}
$$

For $d>6$ the transition is always continuous.

EIH Spanning cluster avoiding model

One can also show analytically that:

for $m<m_{c}$

$$
p_{c m}(N)-p_{c} \sim N^{-1 / \bar{v}_{<}}
$$

$$
1 / \bar{v}_{<}=\left(1-m / m_{c}\right) /(m \zeta+1),
$$

for $m>m_{c}$

$$
1-p_{c m}(N) \sim N^{-1 / \bar{v}_{>}}
$$

$$
1 / \bar{v}_{>}=\left(m / m_{c}-1\right) /(m-1)
$$

Metallic Breakdown

Deposition of metallic particles on a dielectric surface

$$
\begin{aligned}
& q=10 \\
& L=128 \\
& \gamma=0.1 \\
& p=0.57
\end{aligned}
$$

C.L.N.Oliveira, N.A.M. Araújo, J.S. Andrade Jr., H.J.H. Phys.Rev. Lett. 113, 155701 (2014)

Metallic Breakdown

Metallic particles can be adsorbed on the surface and desorbed again. Adsorption is weaker, the stronger the local field.

Probability to replace a resistance by a metallic bond is:

$$
W=\frac{p}{q}\left[1-(1-q)\left(1-\left(\frac{\Delta V}{V_{0}}\right)^{\gamma}\right)\right]
$$

$q>1$ describes the relative deposition disadvantage due to the presence of the electric field.

For $\gamma=-\infty$ this is equivalent to classical bond percolation.

Metallic Breakdown

F. Gliozzi, Phys. Rev. E 66, 016115 (2002)

Simulate critical clusters of the q-state Potts model
(Kasteleyn-Fortuin or Coniglio-Klein or Swendsen-Wang clusters):
Be x a homogeneously distributed random number between 0 and 1.

1. Occupy the bond, if $x<p / q$.
2. Make bond empty, if $x>p$.
3. Occupy if internal bond and make it empty, if it connects two metallic clusters, if $\boldsymbol{p} / \boldsymbol{q}<\boldsymbol{x}<\boldsymbol{p}$.
When $\gamma=0$ our model is identical to Gliozzi's method, because internal bonds are identified through $\Delta V=0$.
Second order transition for $q \leq 4$ and first order transition for $q>4$. CSP 2015, Moscow, September 6-10, 2015

EH
 Metallic Breakdown

red is at transition

$q=10$

CSP 2015, Moscow, September 6-10, 2015

EHH Largest Metallic Cluster

$q=10$
 $p=0.57$

$p=0.58$

$p=0.59$

CSP 2015, Moscow, September 6-10, 2015

Metallic Breakdown

CSP 2015, Moscow, September 6-10, 2015

ETH Connecting the Disconnected

Y.S. Cho, J.S. Lee, H.J.H., B. Kahng, preprint 2015

CSP 2015, Moscow, September 6-10, 2015

ETH
 Connecting the Disconnected

Connect randomly individuals but with a law imposing that every new connection must at least involve one individual belonging to the fraction g of the most disconnected population.

Y.S. Cho, J.S. Lee, H.J.H., B. Kahng, preprint 2015

EH
 Connecting the Disconnected

- Start with N isolated individuals.
- R is the subset of sites belonging to the k clusters following $N_{k-1}(t)<[g N] \leq N_{k}(t)$ with $N_{k}(t)=\sum_{l=1}^{k} s_{l}(t)$
- At each step select uniformly at random one node from R and the other from the entire system.

ETH Connecting the Disconnected

Hybrid Transition

EH
 Connecting the Disconnected

Hybrid Transition

$m(t)= \begin{cases}0 & \text { for } t<t_{c} \\ m_{0}+r\left(t-t_{c}\right)^{\beta} & \text { for } t \geq t_{c}\end{cases}$

In mean-field the cluster size exponent

$$
2<\tau<2.5
$$

varies continuously with \boldsymbol{g} as:

g	τ^{*}	τ
0.1	2.012	2.03 ± 0.04
0.2	2.061	2.08 ± 0.04
0.3	2.111	2.12 ± 0.04
0.4	2.155	2.16 ± 0.04
0.5	2.194	2.18 ± 0.04
0.6	2.231	2.20 ± 0.04
0.7	2.268	2.22 ± 0.04
0.8	2.310	2.25 ± 0.04
0.9	2.364	2.28 ± 0.04

$$
\frac{\varsigma(\tau)}{\varsigma(\tau-1)}=\frac{1}{g}-\frac{1}{g+1} \ln \left(\varsigma(\tau-1)\left(\frac{g+1}{2}\right)^{-\left(1+\frac{1}{g}\right)}\right)
$$

Y.S. Cho, J.S. Lee, H.J.H., B. Kahng, preprint 2015

CSP 2015, Moscow, September 6-10, 2015

ETH
 Connecting the Disconnected

d	τ
0.1	2.03 ± 0.04
0.2	2.08 ± 0.04
0.3	2.12 ± 0.04
0.4	2.16 ± 0.04
0.5	2.18 ± 0.04
0.6	2.2 ± 0.04
0.7	2.22 ± 0.04
0.8	2.25 ± 0.04
0.9	2.28 ± 0.04
0.94	2.3 ± 0.04
0.98	2.37 ± 0.04
0.99	2.4 ± 0.04

CSP 2015, Moscow, September 6-10, 2015

Dirk Helbing

Lucas Böttcher Olivia Wooley-Meza

Nuno Araújo

Endogenous resource constraints trigger explosive pandemics
L. Böttcher, O. Wooley-Meza, N.A.M. Araújo, H.J.H., D. Helbing preprint

ETH Epidemy with Global Budget

Budget-constrained Susceptible-Infected-Susceptible (bSIS) model
contact

recovery

generation

$$
\phi \xrightarrow{\dot{\rightarrow}} \phi+\$
$$

ETH
 Epidemy with Global Budget

Time evolution in the epidemic regime:

CSP 2015, Moscow, September 6-10, 2015

ETH
 Epidemy with Global Budget

Square lattice

CSP 2015, Moscow, September 6-10, 2015

EH
 Coupled Networks

Nuno Araújo

Christian Schneider

Shlomo Havlin
C. Schneider, N. Yazdani, N. Araújo, S. Havlin, HJH, Sci. Rep. 3, 1969 (2013)

EH
 Coupled Networks

C. Schneider, N. Yazdani, N. Araújo, S. Havlin, HJH, Sci. Rep. 3, 1969 (2013) The 2003 blackout in Italy and Switzerland

CSP 2015, Moscow, September 6-10, 2015

ETH Collapse of Coupled Networks

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin. Nature 464, 1025 (2010)

CSP 2015, Moscow, September 6-10, 2015

E/H Collapse of Coupled Networks

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin. Nature 464, 1025 (2010)

CSP 2015, Moscow, September 6-10, 2015

E/H Collapse of Coupled Networks

Fraction of attacked nodes

CSP 2015, Moscow, September 6-10, 2015

Three Ways of creating Jump in \boldsymbol{P}_{∞}

- Compress the p-axis (e.g. by culling)
- Suppress the formation of a spanning cluster
- Increase the formation of internal bonds

The Product Rule does the two last ones but not strongly enough.

