

Discontinuous Percolation

Hans J. Herrmann Computational Physics, IfB, ETH Zürich, Switzerland

CSP 2015

International Conference on Computer Simulations in Physics and beyond

Moscow, September 6-10, 2015

Collaborators

Nuno Araújo

José Soares Andrade

Bob Ziff

Julian Schrenk

Young-Sul Cho

Byungnam Kahng

Lucas de Oliveira

Peter Grassberger

ETH Classical Percolation

Neighboring occupied sites are "connected" and belong to the same cluster. Above a critical theshold p_c one has a spanning cluster. The phase transition is continuous (of second order) with universal critical exponents.

ETH Quest for First Order Transition

Breaking of a dam

Volcano eruption

FIFH First Order Transition in Percolation

Bootstrap Percolation

P(p)

(1,1)

The transition is first order (at $p_c = 1$) on simple cubic and triangular lattice when $Z_c \ge 4$ and on square lattice when $Z_c \ge 3$.

The Saga of Explosive Percolation

Dimitris Achlioptas

Raissa D'Souza

Joel Spencer

D. Achlioptas, R. M. D'Souza and J. Spencer, Science 323, 1453 (2009)

Product Rule (PR)

- Consider a fully connected graph.
- Select randomly two bonds and occupy the one which creates the smaller cluster.

D. Achlioptas, R. M. D'Souza and J. Spencer, Science 323, 1453 (2009)

Product Rule (PR)

cluster size distribution n_s

on the square lattice:

$$n_s \propto s^{-\tau}$$

Y. S. Cho et al., Phys. Rev. E 82, 042102 (2010)

CSP 2015, Moscow, September 6-10, 2015

However, ...

- **Transition continuous in thermodynamic limit**
- J. Nagler, A. Levina and T. Timme, Nature Phys. 7, 2645 (2010)
- O. Riordan and L. Warnke, Science, 333, 322 (2011)
- R. A. da Costa, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Phys. Rev. Lett., 105, 255701 (2010)

But what happens in finite dimension ??

Best-of-*m* Model

José Soares Andrade Jr.

• Select randomly *m* bonds and occupy the one which creates the smaller cluster

This is a straightforward generalization of the Product Rule which corresponds to m = 2. m = 1 is classical percolation.

Best-of-m Model

ETH

at p_c on square lattice

N. A. M. Araújo, J. S. Andrade Jr., R. M. Ziff, and HJH, Phys. Rev. Lett. 106, 095703 (2011)

N. A. M. Araújo, J. S. Andrade Jr., R. M. Ziff, and HJH, Phys.Rev.Lett. 106, 095703 (2011)

CSP 2015, Moscow, September 6-10, 2015

CSP 2015, Moscow, September 6-10, 2015

Largest Cluster Model

Nuno Araújo

PHYSICAL REVIEW LETTERS INTERNATION INTERNATION INTERNATION INTERNATION INTERNATION

- select randomly a bond
- if not related with the largest cluster occupy it
- else, occupy it with probability

$$q = \exp\left[-\left(\frac{s-\overline{s}}{\overline{s}}\right)^2\right]$$

Nuno Araújo and HJH, Phys. Rev. Lett. 105, 035701 (2010)

ETH Largest Cluster Model

order parameter: P_{∞} = fraction of sites in largest cluster

CSP 2015, Moscow, September 6-10, 2015

ETH Largest Cluster Model

at p_c

cluster size distribution

classical percolation

ETH Largest Cluster Model

at p_c

Surface of the clusters

ETH

CSP 2015, Moscow, September 6-10, 2015

ETH Largest cluster Model in 3D

Julian Schrenk

ETH Largest cluster model in 3D

ETH

ETH

CSP 2015, Moscow, September 6-10, 2015

= 1 + 1

CSP 2015, Moscow, September 6-10, 2015

ETH Bridge Percolation in 3D

ETH Bridge Percolation in 3D

CSP 2015, Moscow, September 6-10, 2015

ETH Bridge Percolation d = 2 - 6

CSP 2015, Moscow, September 6-10, 2015

Cutting bonds

If one starts from a fully occupied lattice and removes bonds except if they are cutting bonds in 2d they have the same behavior as the bridges before (same exponents). In higher dimension the exponents are different.

ETH

ETH Same fractal dimension

watersheds

E. Fehr, J.S. Andrade Jr., S.D. da Cunha, L.R. da Silva, H.J.H., D. Kadau, C.F. Moukarzel, E.A. Oliveira, J. Stat. Mech. P09007 (2009) shortest path on loop-less percolation

optimal path crack

J.S. Andrade Jr., E. Oliveira, A. Moreira and HJH, Phys.Rev.Lett. 103, 225503 (2009)

Same fractal dimension

ETH

Schramm-Loewner Evolution (SLE)

Fuses in infinite disorder

A.A. Moreira, C.L.N. Oliveira, A. Hansen, N.A.M. Araújo, H.J.H., J.S. Andrade Jr, Phys. Rev. Lett. 109, 255701 (2012)

E. Daryaei, N. A. M. Araújo, K. J. Schrenk, S. Rouhani and H. J. H. Phys. Rev. Lett. 109, 218701 (2012)

High precision calculation

ETH

E. Fehr, K.J. Schrenk, N.A.M. Araújo, D. Kadau, P. Grassberger, J.S. Andrade Jr., H.J.H. Phys. Rev.E 86, 011117(2012)

Universality

ETH

ETH Corrections to scaling

 $C_L^{2D} = a_{00} + a_{11}L^{-\omega} + a_{21}L^{-\Omega} + a_{22}L^{-\Omega-1}$

model	d	d_f	Ω
WS bond	2	$1.2168 {\pm} 0.0005$	$0.95 {\pm} 0.05$
WS site	2	$1.21705 {\pm} 0.00075$	$0.91{\pm}0.19$
BL	2	$1.21655 {\pm} 0.0015$	$0.87 {\pm} 0.08$
MC	2	$1.21655 {\pm} 0.0045$	0.86 ± 0.11
WS bond	3	$2.4865 {\pm} 0.0025$	$0.96{\pm}0.10$
WS site	3	$2.4865 {\pm} 0.0025$	$0.98 {\pm} 0.09$
BL	3	$2.4878 {\pm} 0.0025$	$1.06{\pm}0.16$

Y. S. Cho, S. Hwang, H.J.H., and B. Kahng, Science, 339, 1185 (2013) Choose *m* unoccupied bonds and occupy randomly one which is not a bridge, if all are bridges then choose randomly one of these bridges.

For finite systems there is a jump for m > 1.

Y. S. Cho, S. Hwang, H.J.H., and B. Kahng, Science, 339, 1185 (2013)

 $m_c(2) \approx 2.55 \pm 0.01$ $m_c(3) = 5.98 \pm 0.07$ $m_c(4) = 16.99 \pm 5.23$

Y. S. Cho, S. Hwang, H.J.H., and B. Kahng, Science, 339, 1185 (2013) CSP 2015, Moscow, September 6-10, 2015

$$N_{b} = d L^{d} \text{ is the number of bonds}$$

$$N_{BB} \sim \begin{cases} L^{1/\nu} & \text{for } p = p_{c} \\ L^{d_{BB}} \left(p - p_{c} \right)^{\varsigma} & \text{for } p > p_{c} \end{cases}$$

probability to have *m* bridge bonds:

$$(p,m) = \left[\frac{N_{BB}}{N_b(1-p)}\right]^m \sim N_b^{-m/m_c} \left[\frac{(p-p_c)^{\varsigma}}{1-p}\right]^m$$

$$\Rightarrow m_c(d) = \frac{d}{d - d_{BB}}$$

q

For *d* > 6 the transition is always continuous.

One can also show analytically that:

for
$$m < m_c$$

$$p_{cm}(N) - p_c \sim N^{-1/\overline{\nu}_{<}}$$

for
$$m > m_c$$

$$1-p_{cm}(N) \sim N^{-1/\overline{\nu}_{>}}$$

$$1/\overline{\nu}_{>} = (m/m_{c}-1)/(m-1)$$

 $\left| 1 / \overline{v}_{<} = (1 - m / m_{c}) / (m\zeta + 1), \right|$

ETH Metallic Breakdown

Deposition of metallic particles on a dielectric surface

C.L.N.Oliveira, N.A.M. Araújo, J.S. Andrade Jr., H.J.H. Phys.Rev. Lett. 113, 155701 (2014)

ETH Metallic Breakdown

Metallic particles can be adsorbed on the surface and desorbed again. Adsorption is weaker, the stronger the local field.

Probability to replace a resistance by a metallic bond is:

$$W = \frac{p}{q} \left[1 - \left(1 - q\right) \left(1 - \left(\frac{\Delta V}{V_0}\right)^{\gamma} \right) \right]$$

q > 1 describes the relative deposition disadvantage due to the presence of the electric field.

For $\gamma = -\infty$ this is equivalent to classical bond percolation.

ETH Metallic Breakdown

- F. Gliozzi, Phys. Rev. E 66, 016115 (2002)
- Simulate critical clusters of the *q*-state Potts model
- (Kasteleyn-Fortuin or Coniglio-Klein or Swendsen-Wang clusters):
- Be x a homogeneously distributed random number between 0 and 1.
- 1. Occupy the bond, if x < p/q.
- 2. Make bond empty, if x > p.
- 3. Occupy if internal bond and make it empty, if it connects two metallic clusters, if p/q < x < p. When γ = 0 our model is identical to Gliozzi's method, because internal bonds are identified through ΔV = 0.
 Second order transition for q ≤ 4 and first order transition for q > 4.

Metallic Breakdown н

red is at transition

ETH Largest Metallic Cluster

Metallic Breakdown

Young-Sul Cho

Byungnam Kahng

Y.S. Cho, J.S. Lee, H.J.H., B. Kahng, preprint 2015

Connect randomly individuals but with a law imposing that every new connection must at least involve one individual belonging to the fraction *g* of the most disconnected population.

Y.S. Cho, J.S. Lee, H.J.H., B. Kahng, preprint 2015

- Start with N isolated individuals.
- R is the subset of sites belonging to the k clusters following

$$N_{k-1}(t) < [gN] \le N_k(t)$$
 with $N_k(t) = \sum_{l=1}^k s_l(t)$

• At each step select uniformly at random one node from R and the other from the entire system.

CSP 2015, Moscow, September 6-10, 2015

Hybrid Iransit	ion
$\int 0$	for $t < t_c$
$\sum = \left\{ m_0 + r(t - t_c)^{\beta} \right\}$	for $t \ge t_c$

varies continuously with g as:

g	$ au^*$	au
0.1	2.012	2.03 ± 0.04
0.2	2.061	2.08 ± 0.04
0.3	2.111	2.12 ± 0.04
0.4	2.155	2.16 ± 0.04
0.5	2.194	2.18 ± 0.04
0.6	2.231	2.20 ± 0.04
0.7	2.268	2.22 ± 0.04
0.8	2.310	2.25 ± 0.04
0.9	2.364	2.28 ± 0.04

$$\frac{\zeta(\tau)}{\zeta(\tau-1)} = \frac{1}{g} - \frac{1}{g+1} \ln\left(\zeta(\tau-1)\left(\frac{g+1}{2}\right)^{-\left(1+\frac{1}{g}\right)}\right)$$

Y.S. Cho, J.S. Lee, H.J.H., B. Kahng, preprint 2015

CSP 2015, Moscow, September 6-10, 2015

Dirk Helbing Lucas Böttcher Olivia Wooley-Meza Nuno Araújo

Endogenous resource constraints trigger explosive pandemics L. Böttcher, O. Wooley-Meza, N.A.M. Araújo, H.J.H., D. Helbing preprint

Budget-constrained Susceptible-Infected-Susceptible (bSIS) model

Time evolution in the epidemic regime:

Square lattice

CSP 2015, Moscow, September 6-10, 2015

Coupled Networks

Nuno Araújo

Christian Schneider

Shlomo Havlin

C. Schneider, N. Yazdani, N. Araújo, S. Havlin, HJH, Sci. Rep. 3, 1969 (2013)

Coupled Networks

C. Schneider, N. Yazdani, N. Araújo, S. Havlin, HJH, Sci. Rep. 3, 1969 (2013) The 2003 blackout in Italy and Switzerland

Collapse of Coupled Networks

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin. Nature 464, 1025 (2010)

Collapse of Coupled Networks

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin. Nature 464, 1025 (2010)

Collapse of Coupled Networks

Largest cluster

ETH

Number of iterations

Fraction of attacked nodes

Summary

Three Ways of creating Jump in P_{∞}

- Compress the *p*-axis (e.g. by culling)
- Suppress the formation of a spanning cluster
- Increase the formation of internal bonds

The Product Rule does the two last ones but not strongly enough.