Lattice Boltzmann simulations of flowing matter across scales: classical, quantum and relativistic

Sauro Succi, IAC-CNR, Rome, Italy and IACS Harvard, Cambridge USA

August 25, 2015

Abstract

Over the last near three decades, the Lattice Boltzmann (LB) method has gained increasing interest as an efficient computational scheme for the numerical simulation of complex flows across a broad range of scales, from fully-developed turbulence in real-life geometries, to multiphase and microflows, all the way down to biopolymer translocation in nanopores. Lately, the method has also shown promising potential for the simulation of quantum-relativistic flows, such as quark-gluon plasmas, electron transport in graphene and relativistic magnetohydrodynamics. After a brief introduction to the main ideas behind the LB method, we shall illustrate a few selected applications, along with future prospects for future multiscale applications, including recent coupling to electronic structure simulations.