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We applied canonical transformation to water wave equation not only to remove cubic nonlinear
terms but to simplify drastically fourth order terms in Hamiltonian. Unlike in [1],[2] we choose four-wave
interaction coefficient in very suitable form:
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Equation of motion is the following:
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here U(x, t) = k̂|c(x, t)|2- advection velocity, k̂ is the modulus wavenumber operator and P̂+ is projection
operator to the upper half-plane.

The new compact equation (2) generalized for the “almost” 2-D waves i.e. waves slightly inhomoge-
neous in the transverse direction y. In this case frequency ω̂ depends on both kx and ky as ω̂kx,ky , while
nonlinear terms not depend on y, and c now depends on both x and y:
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Due to specific structure of nonlinearity the equation (3) can be effectively solved on the computer.
We have performed numerical simulations of sea surface waving in the framework of equations (2, 3).

Initial condition in numerical experiments was chosen as slightly perturbed monochromatic wave. After
some time we observed the freak wave formation.
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